1. INTRODUCTION

This handbook covers operation and service instructions for the model 392 torque multiplier.

2. IMPORTANT INSTRUCTIONS

2.1 Read and understand these operating instructions before using the Torque Multiplier.

2.2 DO NOT USE AN IMPACT WRENCH ON THE TORQUE MULTIPLIER. DAMAGE TO TOOL COULD OCCUR.

2.3 If using a POWER driven input, be sure the selector pawl (Fig. 2, Item 3) has been locked into its neutral position using the neutral positioning set screw (Fig. 2 Item 2).

2.4 When positioning the torque multiplier, be sure socket attached to the output is positioned so that the reaction tube is at right angle to the fastener. Torque reaction creates a rotational force in the opposite direction from which input force is applied. See Application Information Sheet included with the torque multiplier for additional torque multiplier reaction information.

2.5 Remember: Breakout torque can be much greater than the make up torque value. Be sure that the multiplier being used has sufficient capacity for torque breakout. Allow a minimum of 50% additional capacity in the tool for breakaway torque. Damaged and corroded fasteners can require even greater breakaway torque capacity.

2.6 When using the torque multiplier without a torque wrench to monitor input torque, remember that the output torque is significantly greater than the applied input torque. Do not apply more torque than to application can withstand.

2.7 Use only Hydratight Sweeney approved output square drives and replacement parts.

3. DESCRIPTION AND DESIGN FEATURES

3.1 The 392 torque multiplier uses a planetary geared action to tighten and loosen nuts, bolts and cap screws with a continuous 360° rotation in either clockwise or counterclockwise direction. Input and output rotation directions are the same. (EXAMPLE: Clockwise input rotation creates clockwise output rotation) An internal, two-directional anti-backlash device inhibits accidental torque wind-up release.

3.2 A controlled-shear output square drive (Fig. 3 Item 2) protects internal components in the event maximum output capacity is exceeded. This overload-protection feature causes the drive to fracture when output exceeds from 3% to 10% of rated output capacity. One replacement drive is included with the torque multiplier. Additional replacements can be ordered from your distributor.

3.3 The selector pawl (Fig. 2, Item 3) controls the torque multiplier’s rotational direction for manually-applied input. It can also be set in a neutral position for power drive unit torque applications.

3.4 An optional pneumatic power drive is available to convert the torque multiplier from manual to pneumatic operation.

4. SPECIFICATIONS

Output Capacity Lbf·ft (N·m)	2,200 (2,983)
Input Capacity Lbf·ft (N·m)	162 (220)
Gear Ratio	15:1
Torque Ratio	13.6:1
Accuracy	±5% of reading from 20% to 100% of full-scale rating
Output Drive Male Square Size Inch (mm)	1 (25.4)
Input Drive Female Square Size Inch (mm)	1/2 (13)
Overall Dimensions Inch (mm)	Gearbox Ø: 4.06 (103) Height: 5.75 (165) Length: 19.6 (498)
Net Weight Lb. (kg)	15.2 (6.9)
Planetary Gearing Stages	Two
Needle Bearings	Yes
Angle-of-turn Protractor	Yes (5° increments)
Torque Conversion Chart	Yes
Shearable Replaceable Output Drive	Yes
Reaction Anchor Type	Tubular

5. TORQUE CONVERSIONS

5.1 A data plate is attached to the torque multiplier which displays the input torque required to obtain the listed output torque values. If you wish to calculate a specific input value that isn’t listed on the attached chart, divide the desired output torque by the multiplier’s torque ratio (13.6) to determine the input torque required (e.g. 1380 Lbf·ft output torque ÷ 13.6 torque ratio = 100 Lbf·ft input torque).
6. MANUAL OPERATION

6.1 For manually applied input torque: Set the desired rotation direction by pushing the selector pawl (Fig. 2 Item 3) in the direction indicated by the letters and directional arrows stamped on the input end case (Fig. 2, Item 1). EXAMPLE: If counter-clockwise rotation is desired, push pawl to end of travel in the direction shown by the “CCW” arrow. For clockwise rotation, push pawl in the opposite direction.

(See ▲ Warnings)

6.2 Mount the proper size square female drive socket onto the torque multiplier’s output square drive (Fig. 3 Item 2), then position socket and torque multiplier on the fastener to be tightened.

6.3 Butt the reaction anchor tube securely against a suitable object. Remember: When socket is properly positioned on fastener, reaction anchor tube must be at a right angle to the fastener to which torque is being applied. See Application Information Sheet included with the torque multiplier, for additional torque reaction information.

6.4 To tighten manually with torque wrench: Determine the input torque required to obtain the desired output by referring to the torque data plate attached to the torque multiplier's reaction anchor tube. Output torque accuracy requires the use of an accurate torque wrench in series with the torque multiplier.

6.5 Failure of the output square drive, due to torque overload or fatigue, could result in an immediate torque release, potentially causing the torque multiplier to fall from the fastener, and result in personal injury. (See ▲ Warnings)

6.6 Apply torque with torque wrench until desired input torque is achieved. To remove torque multiplier from fastener: Apply enough input torque to release internal anti-backlash device, then push selector pawl (Fig. 2 Item 3) into opposite position (EXAMPLE: Pawl in CW positions for tightening. Apply input torque in the CW direction to relieve force on the pawl. While maintaining input torque in the CW direction, slide pawl into the CCW direction for release) and slowly relax input torque.

6.7 To Loosen: Follow same procedure as for tightening except set the selector pawl in opposite position. (EXAMPLE: If fastener requires clockwise tightening rotation, set pawl in counterclockwise position for loosening.)

7. PNEUMATIC OPERATION

7.1 If you decide to use a non-impact power drive to speed up the process of tightening or loosening fasteners, you MUST remember to lock the selector pawl in the neutral position. Center the selector pawl (Fig. 2 Item 3) between the CW/CCW range of the travel and tighten the setscrew (Fig. 2 Item 2). When properly positioned, the screw will be seated in a groove in the selector pawl, so the pawl cannot be moved in either direction. Take care that the power drive is set to deliver no more than the maximum allowable input torque. A lightweight, reversible air motor is available for use with this line of multipliers. When equipped with the optional air pressure regulator, torque output can be controlled.

8. REPLACING A SQUARE DRIVE ASSEMBLY

8.1 Remove the O-Ring that is on the face of the square drive carrier (Fig. 1 Item 2).

8.2 Remove the square drive retaining pin from the output drive carrier. Pull out the old square drive.

8.3 Insert the new square drive assembly (Fig. 1 Item 3), making certain that the hole in the new square drive assembly lines up with the hole in the square drive carrier.

8.4 Insert dowel pin (Fig. 1 Item 1) in square drive carrier, insuring that the pin engages the hole in the replacement square drive.

8.5 Reattach the O-Ring to the Square Drive Carrier.

Figure 1. Replacing Output Square Drive Assembly
1. Retaining Pin
2. O-Ring
3. Square Drive

Fig 2. Input Detail
1. Rotational Direction Indicators
2. Neutral Positioning Setscrew
3. Selector Pawl
4. ½” Female Square Input Drive
5. Reaction Anchor Tube
6. Reaction Anchor Holding Screw

Fig 3. Output Detail
1. Protractor
2. Controlled-Shear Output Square Drive
3. Protractor Index mark